PicoScope-3205D-MSO

In stock
SKU
picoscope-3205d-mso
S$1,740.00

2 Ch, 100 MHz USB 3.0 Mixed Signal oscilloscopes

  • 100 MHz analog bandwidth
  • 1 GS/s real-time sampling
  • 256 MS buffer memory
  • 100,000 waveforms per second
  • Externaltrigger
  • Arbitrary waveform generator
  • USB 3.0 connected and powered
  • Serial decoding and mask testing as standard
  • Windows, Linux and Mac software

Hardware Acceleration Engine (HAL3)

Some oscilloscopes struggle when you enable deep memory; the screen update rate slows and controls become unresponsive. The PicoScope 3000 Series avoids this limitation with use of a dedicated hardware acceleration engine inside the oscilloscope. Its massively parallel design effectively creates the waveform image to be displayed on the PC screen and allows the continuous capture and display to the screen of over 440 million samples every second. PicoScope oscilloscopes manage deep memory better than competing oscilloscopes, both PC-based and benchtop.

The PicoScope 3000 series is fitted with third-generation hardware acceleration (HAL3). This speeds up areas of oscilloscope operation such as allowing waveform update rates in excess of 100 000 waveforms per second and the segmented memory/rapid trigger modes. The hardware acceleration engine ensures that any concerns about the USB connection or PC processor performance being a bottleneck are eliminated

Advanced digital triggering

The majority of digital oscilloscopes still use an analog trigger architecture based on comparators. This causes time and amplitude errors that cannot always be calibrated out and often limits the trigger sensitivity at high bandwidths.

In 1991 Pico pioneered the use of fully digital triggering using the actual digitized data. This technique reduces trigger errors and allows our oscilloscopes to trigger on the smallest signals, even at the full bandwidth. Trigger levels and hysteresis can be set with high precision and resolution.

The reduced rearm delay provided by digital triggering, together with segmented memory, allows the capture of a new waveform every microsecond until the buffer is full.

The PicoScope 3000 series offers an industry-leading set of advanced triggers including pulse width, windowed and dropout.  In addition logic triggering allows you to trigger the scope when any or all of the 16 digital inputs match a user-defined pattern

DeepMeasure

One waveform, millions of measurements.

Measurement of waveform pulses and cycles is key to verification of the performance of electrical and electronic devices.

DeepMeasure delivers automatic measurements of important waveform parameters on up to a million waveform cycles with each triggered acquisition. Results can be easily sorted, analyzed and correlated with the waveform display.

Mask limit testing

Mask limit testing allows you to compare live signals against known good signals, and is designed for production and debugging environments. Simply capture a known good signal, draw a mask around it, and then attach the system under test. PicoScope will check for mask violations and perform pass/fail testing, capture intermittent glitches, and can show a failure count and other statistics in the Measurements window.

Alarms

PicoScope can be programmed to execute actions when certain events occur.

The events that can trigger an alarm include mask limit fails, trigger events and buffers full.

The actions that PicoScope can execute include saving a file, playing a sound, executing a program or triggering the signal generator / AWG.

Alarms, coupled with mask limit testing, help create a powerful and time saving waveform monitoring tool. Capture a known good signal, auto generate a mask around it and then use the alarms to automatically save any waveform (complete with a time/date stamp) that does not meet specification. 

More Information
Specifications
Oscilloscope — vertical (analog inputs)
PicoScope Model 3203D
& MSO
3204D
& MSO
3205D
& MSO
3206D
& MSO
3403D
& MSO
3404D
& MSO
3405D
& MSO
3406D
& MSO
Input channels 2 channels, BNC single-ended 4 channels, BNC single-ended
Bandwidth
(−3 dB)
50 MHz 70 MHz 100 MHz 200 MHz 50 MHz 70 MHz 100 MHz 200 MHz
Rise time (calculated) 7.0 ns 5.0 ns 3.5 ns 1.75 ns 7.0 ns 5.0 ns 3.5 ns 1.75 ns
Hardware bandwidth limiter Switchable, 20 MHz
Vertical resolution 8 bits
Input ranges ±20 mV to ±20 V full scale in 10 ranges
Input sensitivity 4 mV/div to 4 V/div in 10 vertical divisions
Input coupling AC / DC, programmable
Input characteristics 1 MΩ ±1%, in parallel with 14 pF ±1 pF
DC accuracy ±3% of full scale ±200 μV
Analog offset range
(vertical position adjust)
±250 mV (20 mV, 50 mV, 100 mV, 200 mV ranges)
±2.5 V (500 mV, 1 V, 2 V ranges)
±20 V (5 V, 10 V, 20 V ranges)
Offset adjust accuracy ±1% of offset setting, additional to DC accuracy
Overvoltage protection ±100 V (DC + AC peak)
Oscilloscope — vertical (digital inputs, MSOs only)
Input channels 16 channels (2 ports of 8 channels each)
Input connectors 2.54 mm pitch, 10 x 2 way connector
Maximum input frequency 100 MHz (200 Mb/s)
Minimum detectable pulse width 5 ns
Channel-to-channel skew 2 ns, typical
Minimum input slew rate 10 V/µs
Input impedance 200 kΩ ±2% ∥ 8 pF ±2 pF
Input dynamic range ±20 V
Overvoltage protection ±50 V
Digital threshold range ±5 V
Threshold grouping Two independent threshold controls: D0...D7 and D8...D15
Threshold selection TTL, CMOS, ECL, PECL, user-defined
Threshold accuracy < ±350 mV (inclusive of hysteresis)
Hysteresis < ±250 mV
Minimum input voltage swing 500 mV pk-pk
Oscilloscope — horizontal
PicoScope Model 3203D
& MSO
3204D
& MSO
3205D
& MSO
3206D
& MSO
3403D
& MSO
3404D
& MSO
3405D
& MSO
3406D
& MSO
Maximum sampling rate (real-time)

1 GS/s (1 analog channel)
500 MS/s (up to 2 analog channels or digital ports*)
250 MS/s (up to 4 analog channels or digital ports*)
125 MS/s (all other combinations)

Maximum effective sampling rate (repetitive signals)** 2.5 GS/s 5 GS/s 10 GS/s 2.5 GS/s 5 GS/s 10 GS/s
Maximum sampling rate
(continuous streaming mode)
17 MS/s in PicoScope software
125 MS/s when using the supplied SDK (PC-dependent)
Maximum capture rate 100,000 waveforms/second (PC-dependent)
Timebase ranges 1 ns/div to 5000 s/div 500 ps/div to 5000 s/div 1 ns/div to 5000 s/div 500 ps/div to 5000 s/div
Buffer memory 64 MS 128 MS 256 MS 512 MS 64 MS 128 MS 256 MS 512 MS
Buffer memory (streaming) 100 MS in PicoScope software.
Up to available PC memory when using supplied SDK.
Maximum buffer segments 10 000 in PicoScope software
130 000 using SDK 250 000 using SDK 500 000 using SDK 1 000 000 using SDK 130 000 using SDK 250 000 using SDK 500 000 using SDK 1 000 000 using SDK
Timebase accuracy ±50 ppm ±2 ppm ±50 ppm ±2 ppm
Timebase drift per year ±5 ppm ±1 ppm ±5 ppm ±1 ppm
Sample jitter 3 ps RMS typical
ADC sampling Simultaneous on all enabled channels

* A digital port consists of 8 digital channels, D0–7 or D8–15
** ETS mode on channel A only

Dynamic performance (typical)
PicoScope Model 3203D & MSO 3204D & MSO 3205D & MSO 3206D & MSO 3403D & MSO 3404D & MSO 3405D & MSO 3406D & MSO
Crosstalk Better than 400:1 up to full bandwidth (equal voltage ranges)
Harmonic distortion < −50 dB at 100 kHz full scale input
SFDR 52 dB typical at 100 kHz full scale input
(except ±20 mV range: 44 dB)
Noise 110 µV RMS 160 µV RMS 110 µV RMS 160 µV RMS
(typical, on ±20 mV range)
Bandwidth flatness +0.3 dB, −3 dB from DC to full bandwidth, typical
Triggering – general
Source Analog channels, EXT trigger (not MSOs), digital channels (MSOs only)
Trigger modes None, auto, repeat, single, rapid (segmented memory)
Maximum pre–trigger capture Up to 100% of capture size
Maximum post–trigger delay Up to 4 billion samples (selectable in 1 sample steps)
Trigger rearm time < 0.7 µs at 1 GS/s sampling rate
Maximum trigger rate Up to 10,000 waveforms in a 6 ms burst at 1 GS/s sampling rate, typical
Triggering – analog channels
Advanced triggers Edge, window, pulse width, window pulse width, dropout, window dropout, interval, logic, runt pulse
Trigger types (ETS mode) Rising edge, falling edge (Ch A only)
Trigger sensitivity Digital triggering provides 1 LSB accuracy up to full bandwidth of scope
Trigger sensitivity (ETS mode) 10 mV p-p typical (at full bandwidth)
Triggering – EXT trigger input, not MSO models
Connector type Front panel BNC
Advanced triggers Edge, pulse width, dropout, interval, logic
Input characteristics 1 MΩ || 14 pF
Bandwidth 50 MHz 70 MHz 100 MHz 200 MHz 50 MHz 70 MHz 100 MHz 200 MHz
Threshold range ±5 V
Coupling DC
Overvoltage protection ±100 V (DC + AC peak)
Triggering – digital channels, MSO models only
Source D0 to D15
Trigger types Pattern, edge, combined pattern and edge, pulse width, dropout, interval, logic
Function generator
Standard output signals Sine, square, triangle, DC voltage, ramp, sinc, Gaussian, half-sine, white noise, PRBS
Standard signal frequency DC to 1 MHz
Sweep modes Up, down, dual with selectable start / stop frequencies and increments
Triggering Free-run, or from 1 to 1 billion counted waveform cycles or frequency sweeps. Triggered from scope trigger or manually.
Output frequency accuracy As oscilloscope
Output frequency resolution < 0.01 Hz
Output voltage range ±2 V
Output voltage adjustment Signal amplitude and offset adjustable in approximate 1 mV steps within overall ±2 V range
Amplitude flatness < 0.5 dB to 1 MHz typical
DC accuracy ±1% of full scale
SFDR > 60 dB 10 kHz full scale sine wave
Output impedance 600 Ω
Connector type Front panel BNC (non-MSO models)
Rear panel BNC (MSO models)
Overvoltage protection ±20 V
Arbitrary waveform generator
Update rate 20 MS/s
Buffer size 32 kS
Resolution 12 bits (output step size approximately 1 mV)
Bandwidth > 1 MHz
Rise time (10% to 90%) < 120 ns

Other AWG specifications as function generator

Probe compensation output
Impedance 600 Ω
Frequency 1 kHz
Level 2 V pk-pk, typical
Spectrum analyzer>
Frequency range DC to maximum bandwidth of scope
Display modes Magnitude, peak hold, average
X axis Linear or log 10
Y axis Logarithmic (dbV, dBu, dBm, arbitrary) or linear (volts)
Windowing functions Rectangular, Gaussian, triangular, Blackman, Blackman–Harris, Hamming, Hann, flat-top
Number of FFT points Selectable from 128 to 1 million in powers of 2
Math channels
General functions −x, x+y, x−y, x*y, x/y, x^y, sqrt, exp, ln, log, abs, norm, sign, sin, cos, tan, arcsin, arccos, arctan, sinh, cosh, tanh, derivative, integral, delay
Filter functions Low pass, high pass, band stop, band pass
Graphing functions Frequency, duty cycle
Multi-waveform functions Min, max, average, peak
Operands All analog and digital input channels, reference waveforms, time, constants, pi
Automatic measurements (analog channels only)
Oscilloscope mode AC RMS, true RMS, cycle time, DC average, duty cycle, falling rate, fall time, frequency, high pulse width, low pulse width, maximum, minimum, peak to peak, rise time, rising rate
Spectrum mode Frequency at peak, amplitude at peak, average amplitude at peak, total power, THD %, THD dB, THD+N, SFDR, SINAD, SNR, IMD
Statistics Minimum, maximum, average, standard deviation
Serial decoding
Protocols 1-Wire, ARINC 429, CAN, CAN FD, DALI, DCC, DMX512, Ethernet (10BaseT, 100BaseTX), FlexRay, I²C, I²S, LIN, Manchester, MODBUS, PS/2, SENT, SPI, UART/RS-232, USB 1.0
Mask limit testing
Statistics Pass/fail, failure count, total count
Display
Interpolation Linear or sin(x)/x
Persistence modes Digital color, analog intensity, fast, custom
Miscellaneous
Output file formats BMP, CSV, GIF, JPEG, MATLAB 4, PDF, PNG, PSDATA, PSSETTINGS, TXT
Output functions Copy to clipboard, print
Software
Windows software PicoScope for Windows
PicoSDK Software development kit (SDK)
Windows 7, 8 or 10 recommended (read more)
macOS software PicoScope for macOS (beta: feature list)
Software development kit (SDK)
OS versions: see release notes
Linux software PicoScope for Linux (beta: feature list)
Software development kit (SDK)
See Linux Software & Drivers for details of supported distributions
Languages Chinese (simplified), Chinese (traditional), Czech, Danish, Dutch, English, Finnish, French, German, Greek, Hungarian, Italian, Japanese, Korean, Norwegian, Polish, Portuguese, Romanian, Russian, Spanish, Swedish, Turkish
Physical specifications
Dimensions 190 mm x 170 mm x 40 mm (including connectors)
Weight < 0.5 kg
Temperature range Operating: 0 °C to 40 °C (15 °C to 30 °C for stated accuracy).
Storage: –20 °C to 60 °C
Humidity range Operating: 5% RH to 80% RH non-condensing.
Storage: 5% RH to 95% RH non-condensing
Altitude range Up to 2000 m
Pollution degree 2
Package contents PicoScope 3000D Series oscilloscope
2 or 4 switchable 10:1/1:1 oscilloscope probes
Quick Start Guide
USB 3.0 cable
AC power adaptor (4-channel models only)
TA136 digital cable (MSOs only)
2 × TA139 pack of 10 logic test clips (MSOs only)
PC connectivity USB 3.0 SuperSpeed (USB 2.0 compatible)
Power requirements Powered from a single USB 3.0 port or two USB 2.0 ports.
4-channel models: AC adaptor included for use with USB ports that supply less than 1200 mA
Safety approvals Designed to EN 61010-1:2010
EMC approvals Tested to EN 61326-1:2006 and FCC Part 15 Subpart B
Environmental approvals RoHS and WEEE compliant
Warranty 5 years
Write Your Own Review
You're reviewing:PicoScope-3205D-MSO
Your Rating