PicoVNA 106

In stock
SKU
PicoVNA-106
S$7,995.00

PicoVNA 106

A 6 GHz Vector Network Analyzer

High performance, portability and low cost

  • 300 kHz to 6  GHz operation
  • High speed of up to 5500 dual-port S-parameters per second
  • Over 10000 S11 + S21 per second
  • Quad RX four-receiver architecture for optimal accuracy
  • Up to 124 dB dynamic range at 10 Hz bandwidth
  • 0.005 dB RMS trace noise at maximum bandwidth of 140 kHz
  • Half-rack, small-footprint, lightweight package 
  • PC-controlled over USB from a Microsoft Windows interface
  • Reference plane offsetting and de-embedding
  • Time-domain and port impedance transformations
  • Tabular and graphic print and save formats, including Touchstone
  • Save on trigger for high-speed device profiling (PicoVNA 108)
  • Dual-frequency mixer measurements with VSWR correction (PicoVNA 108)
  • P1dB, AM to PM, and standalone signal generator utilities
  • Guided 8- and 12-term and absolute power calibration processes
  • 6 calibration modes, including unknown through and connected DUT isolation
  • Calibration and check standards with data for confident measurements

PicoVNA 106

A 6 GHz Vector Network Analyzer

Vector network analysis for the many

Once the domain of an elite few, microwave measurement has encroached into the lives of scientists, educators, surveyors, inspectors, engineers and technicians alike. Today’s microwave measurements need to be straightforward, portable, accurate, cost-effective and easy to learn.

PicoVNAs are all-new, UK-designed, professional USB-controlled, laboratory grade vector network instruments of unprecedented performance, portability and value for money. Despite their simple outline, small footprint and low cost, the instruments boast a four-receiver architecture to minimize the uncorrectable errors, delays and unreliability of internal transfer switches.

The PicoVNA 108 delivers an exceptional dynamic range of 124 dB at 10 Hz (118 dB for the PicoVNA 106) and less than 0.006 dB RMS trace noise at its maximum operating bandwidth of 140 kHz. The instruments can also gather all four S-parameters at each frequency point in just 182 μs (PicoVNA 106) or 189 μs (PicoVNA 108) or or S11 + S21 in less than 100 μs. In other words, a 201 point 2-port .s2p Touchstone file in less than 38 ms or up to two .s1p files in less than 20 ms. Their low price makes them cost-effective as deep dynamic range scalar network analyzers or single-port vector reflectometers as well as full-function dual-port, dual-path vector network analyzers. They are affordable in the classroom, in small businesses and even in amateur workshops, yet capable of meeting the needs of all users up to the laboratory or production test technician or the metrology expert.

Vector network analysis everywhere

The PicoVNAs' small size, light weight and low cost suit them to field service, installation test, OEM embedded and classroom applications. With their remote automation capability, they are also attractive in applications such as:

  • Test automation, including multiple VNA control and measurement
  • Manufacturers needing to integrate a reflectometry or transmission measurement core
  • Inspection, test, characterization and calibration in the manufacture, distribution and service center industries:
    • Electronics component, assembly and systems, and interface/interconnect ATE (cable, PCB and wireless)
    • Material, geological, life-science and food sciences; tissue imaging; penetrating scan and radar
  • Broadband cable and harness test and matching at manufacture and installation, and fault-over-life monitoring
  • Antenna matching and tuning

Software development kits, including code examples in MATLAB and MATLAB RF toolbox, LabVIEW, C, C# and Python, are all available for download from Pico Technology’s GitHub pages. Examples include multiple instrument addressing and control.

6 GHz Network Metrology Training and Metrology Kits

In the classroom, Pico supports Network Metrology education through a low-cost, potentially one-per-student classroom kit. The Network Metrology Training Kit comprises PCB based passive and active circuit and transmission line examples, calibration standards and test leads, and for Microwave Office users, the project files used in its design. Just add the PicoVNA to start making and learning about network measurements and their critical role within the Design-Simulate-Implement-Measure design cycle.

More Information
Specifications
Receiver characteristics
ParameterValue (PicoVNA 106)Value (PicoVNA 108)Conditions
Measurement bandwidtd 140 kHz, 70 kHz, 35 kHz, 15 kHz, 10 kHz, 5 kHz, 1 kHz, 500 Hz, 100 Hz, 50 Hz, 10 Hz
Average displayed noise floor
Band (MHz)
0.3–10
10–4000
> 4000
Typical (dB)
–110
–118
–110
Max. (dB)
–100
–108
–100
Band (MHz)
0.3–1
1–6G
> 6G
Typical (dB)
–100
–124
–120
Max. (dB)
–90
–110
–100
Relative to the test signal level set to maximum power after an S21 calibration.
Ports terminated as during the isolation calibration step.
Dynamic range

See dynamic range in the product features. Excludes crosstalk.

10 Hz bandwidth
Maximum test power:
PicoVNA 106: +6 dBm
PicoVNA 108: 0 dBm
No averaging

Temperature stability, typical 0.02 dB/ °C for F < 4 GHz
0.04 dB/ °C for F ≥ 4 GHz
Measured after an S21 calibration
Trace noise, dB RMS
Bandwidth
10 kHz
70 kHz
140 kHz
Typical
0.0008 dB
0.003 dB
0.005 dB [106]
0.006 dB [108]
Max.
0.002 dB
0.005 dB
0.01 dB
201-point sweep covering 1 MHz to 6 GHz or 8.5 GHz.
Test power set to 0 dBm.
Measurement uncertainty See table below Test level of –3 dBm
No averaging
Bandwidth 10 Hz
Ambient temperature equal to the calibration temperature.
A 12 error term calibration is assumed carried out with a good quality 3.5 mm calibration kit capable of achieving the performance specified.
Spurious responses –76 dBc typical, –70 dBc max. The main spurious response occurs at close to (2 x RF + 1.3) MHz, where RF is the test frequency in MHz. For example, when testing a bandpass filter with a centre frequency of, say 1900 MHz, an unwanted response will occur around 949.35 MHz. There may also be spurious responses close to (3 x RF + 2.6) MHz. In all known cases the levels will be as stated.
Measurement uncertainty - value
PC3.5 test port interfaces
Reflection measurements Transmission measurements
Freq. range Magnitude Phase Freq. range Magnitude Phase
–15 dB to 0 dB 0 dBm to +6 dBm
< 2 MHz 0.7 dB < 2 MHz 0.4 dB
> 2 MHz 0.5 dB > 2 MHz 0.2 dB
–25 dB to –15 dB  –40 dB to 0 dB
< 2 MHz 0.8 dB < 2 MHz 0.2 dB
> 2 MHz 1.0 dB > 2 MHz 0.1 dB
–30 dB to –25 dB  –60 dB to –40 dB
< 2 MHz 3.0 dB 20° < 2 MHz 0.5 dB [106]
0.3 dB [108]
> 2 MHz 2.5 dB [106]
3.0 dB [108]
15°
20°
> 2 MHz 0.3 dB
 –80 dB to –60 dB
< 2 MHz 2.0 dB 15°
> 2 MHz 1.5 dB 12°
SMA test port interfaces
–15 dB to 0 dB +0 dBm to +6 dBm
< 2 MHz 0.99 dB 11.3° < 2 MHz 0.57 dB 8.5°
> 2 MHz 0.71 dB 5.7° > 2 MHz 0.28 dB 2.8°
–25 dB to –15 dB  –40 dB to 0 dB
< 2 MHz 1.13 dB 14.1° < 2 MHz 0.42 dB 2.8°
> 2 MHz 1.41 dB 8.5° > 2 MHz 0.14 dB 1.4°
–30 dB to –25 dB  –60 dB to –40 dB
< 2 MHz 4.24 dB 28.3° < 2 MHz 0.71 dB 11.3°
> 2 MHz 3.54 dB 21.2° > 2 MHz 0.42 dB 5.7°
 –80 dB to –60 dB
< 2 MHz 2.83 dB 21.2°
> 2 MHz 2.12 dB 17.0°
Test port characteristics
Parameter PicoVNA 106 PicoVNA 108 Conditions
Load match
Uncorrected:
Corrected:
16 dB, typical [106]
15 dB, typical [108]
46 dB, typical
40 dB, min
Source match
Uncorrected:
Corrected:
16 dB, typical [106]
15 db, typical [108]
46 dB, typical
40 dB, min
Directivity
Corrected: 47 dB, typical
40 dB, min
Crosstalk
Band
< 2 MHz
2 M–4 GHz
4–6 GHz
Typical
–100
–110
–100
Max
–90
–90
–90
Band
< 1 MHz
2 M–6 GHz
6–8.5 GHz
Typical
–100
–110
–100
Max
–90
–90
–90
Corrected.
Both calibrated ports terminated in short circuits.
After isolation calibration.
Maximum input level +10 dBm, typ 0.1 dB compression
Maximum input level +20 dBm +23 dBm No damage
Impedance 50 Ω
Connectors Type N(f)
Bias-T input characteristics
Parameter PicoVNA 106 PicoVNA 108 Conditions
Maximum current 250 mA
Maximum DC voltage ±15 V
Current protection Built-in resettable fuse
DC port connectors SMB(m)
Sweep I/O characteristics
Sweep trigger output voltage Low: 0 V to 0.8 V
High: 2.2 V to 3.6 V
Sweep trigger input voltage Low: –0.1 V to 1 V
High: 2.0 V to 4 V
Sweep trigger input voltage ±6 V No damage
Sweep trigger in/out connectors BNC(f) on back panel
Measuring functions
Measuring parameters S11, S21, S22, S12
P1dB (1 dB gain compression)
AM-PM conversion factor (PM due to AM)
Mixer conversion loss, return loss, isolation and compression (PicoVNA 108 only)
Error correction 12 error term full S-parameter correction (insertable DUT)
12 error term full S-parameter correction (non-insertable DUT)
8 error term full S-parameter unknown thru correction (non-insertable DUT)
S11 (1-port correction)
De-embed (2 embedding networks may be specified), impedance conversion
S21 (normalize, normalize + isolation)
S21 (source match correction + normalize + isolation)
Averaging, smoothing
Hanning and Kaiser–Bessel filtering on time-domain measurements
Electrical length compensation (manual)
Electrical length compensation (auto)
Effective dielectric constant correction
Display channels 4 channels
Traces 2 traces per display channel
Display formats Amplitude (logarithmic and linear)
Phase, Group Delay, VSWR, Real, Imaginary, Smith Chart, Polar, Time Domain
Memory trace One per display channel
Limit lines 6 segments per channel (overlap allowed)
Markers 8 markers
Marker functions Normal, Δ marker, fixed marker, peak / min. hold, 3 dB and 6 dB bandwidth
Sweep functions
Parameter PicoVNA 106 PicoVNA 108 Conditions
Sweep type Linear sweep
CW sweep (timed sweep)
Power sweep (P1dB utility)
Sweep times
Bandwidth S11, S21, S11+S21 calibration Full 12 or 8-term calibration
140 kHz 19 ms [106]
20 ms [108]
37 ms [106]
38 ms [108]
10 kHz 37 ms 72 ms
1 kHz 0.21 s 0.42 s
100 Hz 1.94 s 3.87 s
10 Hz 19.2 s 38.4 s
LF Adder (For each low frequency point <2.5 MHz) 1.25 ms/pt 2.5 ms/pt

10 MHz to 6 GHz or 8.5 GHz, 201-point trace length. For other lengths and bandwidths, sweep time is approximately:
TSWP (s)= N x (TMIN + FBW / RBW) + TARM
where N = number of frequency points,
TMIN (s)= minimum time per point (s2p: 167 μs; s1p: 85 μs),
FBW = bandwidth settle factor (s2p: 1.91; s1p: 0.956),
RBW = resolution bandwidth (Hz).
For sweep repetition period add software rearm time:
TARM = average 6.5 ms or worst case 50 ms. For markers on, increase TARM by 39 ms.

Number of sweep points, VNA mode 51, 101, 201, 401, 801, 1001, 2001, 4001, 5001, 6001, 7001, 8001, 9001,10001
Number of sweep points, TDR mode 512, 1024, 2048, 4096
Signal source characteristics
Parameter PicoVNA 106 PicoVNA 108 Conditions
Frequency range 300 kHz to 6.0 GHz 300 kHz to 8.5 GHz
Frequency setting resolution 10 Hz
Frequency accuracy 10 ppm max With ambient of 23 ±3 °C
Frequency temperature stability ±0.5 ppm/ºC max Over the range +15 °C to +35 °C
Harmonics –20 dBc max With test power set to < –3 dBm
Non-harmonic spurious –40 dBc typical
Phase noise (10 kHz offset) 0.3 MHz to 1 GHz: –90 dBc/Hz
1 GHz to 4 GHz: –80 dBc/Hz
> 4 GHz: –76 dBc/Hz
Test signal power
F < 10 MHz: –3 to –20 dBm
10 MHz < F < 4 GHz: +6 to –20 dBm
F > 4 GHz: +3 to –20 dBm

≤ 6 GHz:

+10 dBm to –20 dBm

> 6 GHz: + 6 dBm to –20 dBm
Power setting resolution 0.1 dB
Power setting accuracy ±1.5 dB
Reference input frequency 10 MHz ±6 ppm
Reference input level 0 ±3 dBm
Reference output level 0 ±3 dBm
Miscellaneous
Controlling PC data interface USB 2.0
Support for third party test software Dynamic Link Library (DLL) as part of user interface software
External dimensions (mm) 286 x 174 x 61 (L x W x H)
Excluding connectors
Weight 1.9 kg
Temperature range (operating) +5 °C to +40 °C
Temperature range (storage) –20 °C to +50 °C
Humidity 80% max, non-condensing
Vibration (storage) 0.5 g, 5 Hz to 300 Hz
Power source and current +12 to +15 V DC, 22 W (PicoVNA 106) / 25 W (PicoVNA 108)
Power source connector 5.5 mm diameter hole, 2.1 mm diameter centre contact pin.
Centre pin is positive.
Host PC requirements Microsoft Windows 7, 8 or 10
2 GB RAM or more
Safety Conforms to EN61010-1:2010 and EN61010-2-030:2010
Warranty 3 years
Write Your Own Review
You're reviewing:PicoVNA 106
Your Rating