PG914

In stock
SKU
pg914
S$18,380.00

4 Ch Differential pulse generator

2 Ch SRD

  • Integral 50 Ω SMA(f) Step Recovery Diode outputs
  • < 60 ps transition time
  • Dual 2.5 to 6 V variable amplitude outputs
  • ±1 ns in 1 ps steps timing deskew
  • 200 ns to 4 μs pulse width
  • 1 μs to 1 s internal clock period
  • < 3 ps RMS jitter relative to external trigger
  • –20 dB 10 GHz SMA(m-f) attenuator included with Step Recovery Diode outputs

2 Ch TD

  • External 50 Ω N(m) positive and negative Tunnel Diode pulse heads
  • < 40 ps transition time
  • Dual > 200 mV fixed amplitude outputs
  • ±200 ps in 1 ps steps timing deskew
  • Inter-series N(f) – SMA(m) adapter included with Tunnel Diode pulse heads

Typical applications include:

  • TDR/TDT network and match analysis
  • Spectral and flatness measurements
  • Timing, jitter and crosstalk determinations

PG914, 4 Ch Differential pulse generator

The PicoSource PG900 Series are low-jitter triggered differential USB pulse generators. Pulse outputs are optimized for broad spectral content (fastest transition time) to best suit spectral and time-domain transmission and reflectometry measurements. An internal clock is provided for stand-alone, self-triggered operation and trigger input and output allow the generators to source or respond to system triggers. Differential outputs ensure that the proliferation of gigabit differential interconnect and systems can all be addressed (e.g. SATA, USB3, HDMI, Ethernet).

Essential to any differential test or measurement is the ability to adjust for small but significant velocity and path length differences that are bound to exist in any measurement setup. The PG900 pulse outputs can each be adjusted (time-skewed) in 1 ps increments to deskew path differences before the measurement, or to deliberately stress a transmission path with timing skew.

Despite their small size and portability the PicoSource PG900 generators pack quite a punch, with integrated Step Recovery Diode outputs of up to 6 V pk each into 50 Ω. That’s a whopping 12 V pk differential pulse amplitude to drive lossy paths or stress system ports. Outputs are adjustable in 10 mV steps down to 2.5 V pk. A user-settable amplitude limit is provided to protect more sensitive system ports and 20 dB attenuators are supplied fitted to the pulse outputs for small-signal and optimum-match applications

Step Recovery variable amplitude pulse

The positive (fast rise) and negative (fast fall) pulses are both ground referenced and each pulses in opposite polarity to their user selected amplitude. This amplitude (the 'mark') is held for the user-selected pulse width and then returns to ground. Further pulses are prevented for the user set hold-off period and thereafter will repeat at 40 ns after the next received trigger. When the internal clock is selected, the pulse will repeat at the user-set period and holdoff is inactive. An output trigger is generated 40 ns before every pulse, however initiated.

Pulse transition time is typically 55 ps and spectral content (compared with a simulated ideal infinitely fast edge) extends to around 13 GHz @ –10 dB.

The negative (fast fall) pulse can be selected for even faster transition time by selecting 'fast' rather than 'smooth' mode. Pulse aberration is compromised but transition time is typically 45 ps and spectral content extends to around 14 GHz @ –10 dB.

Tunnel Diode Head fixed-amplitude pulse

The positive (fast rise) and negative (fast fall) pulses are both ground-referenced and each pulses in opposite polarity to its user-selected amplitude. This amplitude (the 'mark') is held for the user-selected pulse width and then returns to ground. Further pulses are prevented for the user-set holdoff period and thereafter will repeat at 40 ns after the next received trigger. When the internal clock is selected, the pulse will repeat at the user-set period and holdoff is inactive. An output trigger is generated 40 ns prior to every pulse, however initiated.

Pulse transition time is typically 55 ps and spectral content (compared with a simulated ideal infinitely fast edge) extends to around 13 GHz @ –10 dB.

The negative (fast fall) pulse can be selected for even faster transition time by selecting 'fast' rather than 'smooth' mode. Pulse aberration is compromised but transition time is typically 45 ps and spectral content extends to around 14 GHz @ –10 dB.

.

More Information
Specifications

PicoSource PG900 Series specifications

PicoSource PG911 and PG914

Integrated step recovery diode pulse outputs
Pulse outputs Positive-going (fast rise) and negative-going (fast fall) outputs returning to 0 V.
Adjustable amplitude and timing parameters. Fast transition on leading edge.
Output impedance 50 Ω
Output connector SMA(f)
Output amplitude Adjustable 2.5 V to 6 V in 10 mV steps
Output accuracy ±10%
Output amplitude limit 2.5 V to 6 V, adjustable in 100 mV increments
Duty cycle limit 50% maximum (for 2.5 V to 4 V amplitude)
20% maximum (up to 6 V amplitude)
Differential deskew range Adjustable in 1 ps steps over 2 ns range
  Positive or negative-going, smooth mode: Negative-going, fast mode:
Pulse transition time < 60 ps (10% to 90%) (smooth mode) < 50 ps (10% to 90%)
Pulse aberrations < +20%, –10% for first 2 ns
< ±7% to 10 ns
< ±2% to pulse width –50 ns

< (+40%, –10%)

Trailing edge transition time < 8 ns (10% to 90%)

PicoSource PG912 and PG914

Drive outputs with tunnel diode pulse heads
PS9040 Positive tunnel diode pulse head Positive-going (fast rise) output on < 70 mV pedestal.
Fixed amplitude and adjustable timing parameters.
Fast transition on leading edge.
PS9041 Negative tunnel diode pulse head Negative going (fast fall) output on < –70 mV pedestal.
Fixed amplitude and adjustable variable timing parameters.
Fast transition on leading edge.
Output impedance 50 Ω, ±2 Ω
Output connector N(m)
Output amplitude Fixed 200 mV
Output accuracy ±25%
Differential deskew range Adjustable in 1 ps steps over 200 ps minimum, 300 ps typical
Pulse transition time < 40 ps (10 % to 90%)
Pulse aberrations < ±20%, for first 2 ns
< ±7% to 15 ns
< ±2% to (pulse width – 50 ns)
Trailing edge transition time < 8 ns (10% to 90%)
Dimensions (each pulse head) 80 mm x 28 mm x 25 mm
Weight (each pulse head) 125 g

All models and outputs

Pulse timing
Pulse trigger source External input, manual single shot event or internal clock
Jitter relative to leading edge 3.0 ps RMS typical. 3.5 ps RMS maximum.
Post-trigger delay to pulse leading edge Fixed 42 ns ±2 ns
Allows leading-edge capture on sampling oscilloscopes
Pulse width and accuracy 200 ns to 4 µs ± 10% ± 50 ns, user adjustable in steps of 25 ns
Pulse width jitter < 150 ppm of width RMS
External trigger hold-off Adjustable 1 μs to 1.3 ms in steps of 200 ns, to maximum of 345 ms in steps of < 15 ppm
Internal clock specification
Period and accuracy Adjustable 1 µs to 1 s, ±100 ppm ±10 ns in steps of 200 ns
External trigger input specification
Impedance 50 Ω ±1%
Connector SMA(f)
Maximum input level +16 dBm, or ±2 V DC or AC pk
Bandwidth 1 GHz, DC coupled
Trigger polarity Selectable rising or falling edge
Trigger level Selectable –1 V to +1 V in steps of 1 mV
Sensitivity < 50 mV pk-pk DC to 100 MHz, rising linearly to 100 mV pk-pk at 1 GHz
Minimum pulse width 500 ps at 100 mV pk-pk
External trigger output specification
Trigger output pulse Fixed amplitude and timing parameters, positive edge polarity, trigger is leading edge
Impedance 50 Ω, ±0.5 Ω
Connector SMA(f)
Amplitude and offset > 700 mV fixed, on logic low of 0 V ± < 100 mV
Pulse width 500 ns, ±100 ns
Trigger to trigger output delay 4 ns, ±1 ns
Trigger to trigger output jitter 2.5 ps rms typical. 3 ps rms maximum.
Transition time < 400 ps (10% to 90%)
General specifications
AC to DC adaptor 5 V ±5% at 1.6 A, 8 W, universal plug (adaptor included)
PC connection USB 2.0 (USB 1.1 and USB 3.0 compatible), 1.8 m USB 2.0 lead included
PC requirements Windows XP SP3 to Windows 8
Operating temperature range +5 °C to +35 °C
Storage temperature range –20 °C to +50 °C
Temperature range for stated specifications +15 °C to +25 °C or TCAL (temperature of calibration) ±5 °C
Operating humidity range < 85% RH (non-condensing) at +25 °C
Storage humidity range < 95% RH (non-condensing)
Dimensions (instrument) 190 mm W x 180 mm D x 40 mm H
Weight (instrument) 560 g
Warranty 5 years

Specifications describe guaranteed performance over the stated temperature range and apply after the instrument’s temperature has been stabilized in 1 hour of continuous operation. All specifications are subject to change without notice.

Factory calibration cycle. For optimum performance, the instrument should have a complete verification of specifications once every 12 months.

Write Your Own Review
You're reviewing:PG914
Your Rating